

New Approach to Untying the Slag Knot

Yu-Chen Andre LEE, Fellow, ECO 13-16 June, 2016

Disclaimer

For presentations to the general public:

This document is protected by copyright. Distribution to third parties or reproduction in any format is not permitted without written permission from worldsteel. worldsteel operates under the strictest antitrust guidelines. Visit worldsteel.org\About us for detailed antitrust guidelines.

For presentations containing preliminary information to members:

The contents of this document are for discussion only and have not been formally approved. Distribution to third parties or reproduction in any format is not permitted.

For presentations to members, confidential:

This document is for worldsteel member companies only. Please do not distribute it to third parties.

For presentations to members, non confidential:

The material in this document is protected by copyright. Use, distribution to third parties or reproduction in any format is allowed, provided worldsteel is acknowledged as the source of the information.

Contents

Introduction "steel slag management-literature study"

An overview of survey analysis

Problems and countermeasures

New approach to untying the slag knot

- Produce slag as a product during steel-making
- Develop a fully stable and eco-friendly slag technology
- Make the most of recycling (from internal use)
- Legislative position of slag in the circular economy
- Slag impact on mitigating global climate change
- Adding value to slag and turning it into a profitable product
- Conclusions

Follow-up work

Introduction to "steel slag management-literature study" project

Introduction to "steel slag management-literature study" project

- a) Communicate with worldsteel/ECO members to understand their needs and wishes. → Prepare questionnaire
- b) Identify gaps in existing knowledge and suggest follow-up action
- C) Evaluate maturity and use of the techniques/practices
- d) Assist members to improve steel / slag making processes, steel slag quality (high pH & volumetric expansion) and find new/alternative uses for steel slag.
- e) Collect public and non-public information and create of steel slag catalogue on Extranet.

An overview of survey analysis

Context of questionnaire & data analysis

- A questionnaire covered pre-treatment, BOF, secondary refining and EAF slags. Data collection involved generation rate, handling and treatment process, destination of recycling and legislation etc.
- Survey participants: <u>39 steel plants + Nippon Slag Association</u>
- Annual steel production of participants: 146 million tonnes
 \$\overline\$ 9 % of 2015 world production (1623 million tonnes)

Sum of crude steel produced by the participants	participants produced by	Numbers of participants produced by EAF process	Numbers of participants produced by BOF and EAF process	
120,774,944	15	-	C	20
25,654,261	-	18	6	39

Survey participants :

Regions distribution of participants

BOF/ Integrate steel plant								
		Europe			America	Asia		
Central Europe	Eastern Europe		Southern Europe	Nordic	Latin America	China	East Asia	South Asia

EAF steel plant							
	Europe		America	Asia			
Eastern Europe	Western Europe	Southern Europe	Nordic	Latin America	Middle East Asia		

Countries distribution of participants(7 of the 12 largest steel producing countries)

1	2	3	4	5	6	7	8	9	10	11	12
China	Japan	India	USA	Russia	South Korea	Germany	Brazil	Turkey	Ukraine	Italy	Taiwan
\checkmark	0	\checkmark	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark	\checkmark

(Japanese static information provided by Nippon Slag Association)

Pre-treatment slag – <u>generation</u> (1/8)

Percentage of crude steel for pre-treatment

Do not ne	eed pre-treatment	18%
Subject to	Desulfurization(De-S)	81.7%
Pre-treatment	De-S plus De-P	0.3%
process in 82%	De-S + De-P + De-Si	0%

Ratio for TPC injection and KR impeller desulfurilization

Pre-treatment	torpedo car injection desulfurizaion	66%
process	Kanbara Reactor impeller desulfurization	15%

Pre-treatment slag generation (dry base):

Pre-treatment slag generation (kg/ton of crude steel)	Top 20% lowest rate average
19 ± 9	8.4

Pre-treatment slag – generation rate & processing (2/8)

Specific generation of TPC injection and KR impeller De-S slag:

Specific generation (kg/Ton of crude steel)						
TP	TPC injection De-S slag Kanbara Reactor impeller De-S slag					
20 ± 9	8.4 (Top 20% lowest rate average)	26 ± 7	14 (Top 20% lowest rate average)			

Common processing for De-S slag handling:

Water cooling \rightarrow crushing \rightarrow magnetic separation \rightarrow screening

Pre-treatment slag – <u>properties</u> (3/8)

as-received De-S slag: <u>pH=12.19±0.13</u>

[Measurement of pH value of a solution consists of fine slag aggregates (<1mm) and deionized water (ratio of slag : DI-water in weight = 1:1)]

Average <u>metallics</u> content in De-S slag

		Intern	External	
Average <u>metallics</u> content in De-S slag	26%	In BOF	In sinter Plant	recycled
		50%	27%	23%

Pre-treatment slag – <u>destination of recycling</u> (4/8)

Destination of pre-treatment slag (without metallic)	Ave. (%)
Internal recycling in sinter plant (as sinter feed) (the best 100%)	32	1
% of addition to sinter (the best 4%)	0.77	
External- engineering filling for land or sea area, respectively (e.g. use of waste in terms of landscape construction.)	27	2
Landfilling including internal and external (3 companies-100% landfilling)	23	3
External-as a raw material for cement manufacturer	13	4
Internal and temporary stockpiling	3	
Other applications	3	
External-CLSM (controlled low strength material) (low strength concrete) for civil engineering construction-hydraulically bound with cement or binder(s)	0.1	
External-agricultural application-fertiliser (~20% addition when mixing with soil)	0	
External-agricultural application-soil improvement (no mixing)	0	
External-aqua cultural application-improvement of pH value of surrounding water	0	

Pre-treatment slag – good performance & opposition (5/8)

Good performance

- 1) <u>100%</u> internal reused in <u>sinter</u> plant (4% addition) -- East Asia
- 2) <u>60% Internal reused in sinter plant</u> + <u>40% recycled in BF</u> -- Western Europe

3) Raw material for <u>cement</u> industry -- Latin America(25%), East Asia(<u>50.5%</u>), China(86%)

• Trend of internal and temporary stockpiling (comparing with 2014)

→ increasing-2 plants (Latin America-1 & East Asia-1)

Specific use has been campaigned against from other industries, or NGO's

- in agricultural application

Pre-treatment slag – <u>categorisation</u> (6/8)

 Categorisation of De-S slag by national/regional legislation Among 16 countries/ regions:

Catego	risa	tion of De-S slag by national/regional legislation
		Slovakia
Product	3	India
		Taiwan
		Korea, Sweden
By-product	4	Finland, India
		China (north)
End-of-waste	0	
		Brazil, China (middle)
		Turkey, Italy
Waste	7	France, Germany
		UK, Belgium
		Greece

Pre-treatment slag – gap (7/8)

Gap

- •Recycling destination (comparing with good performance)
 - 1) <u>100% landfilling</u>--Central Europe, Nordic, South Asia
- 2) <u>50-100% Engineering filling</u>--South Europe, Nordic, East Asia
- Legislative limit of <u>Fluorine content</u> in De-S slag

(Ground water will be contaminated by fluorine composition)

- 1) In Western Europe : <u>0%</u>
- 2) In general, F content < 0.2% (majority of steel plants)
- F content >15% → two steel plants in southern Europe and Latin America, respectively.

Pre-treatment slag – <u>other limitations</u> (8/8)

Other limitations due to legal or technical issues

1) Opposition from the environmental agencies

Steel plants in Brazil face some opposition, sometimes, from the environmental agencies, for use of non inert residues such as pre-treatment slag in applications such as filling for landscape construction (engineering filling), being usually analysed case by case.

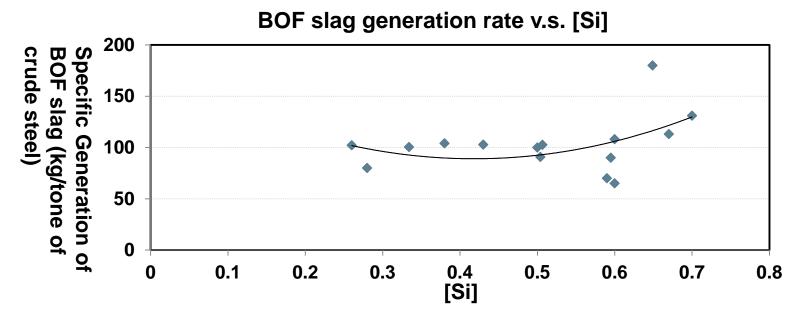
2) In the case of agricultural or aqua culture applications, <u>the</u> <u>content of fluorine</u> in periphery area (not slag itself) needs to meet <u>400 mg/kg or less</u> (for the warning limits of Zone 1) (Eastern Asia)

BOF & SEC slag – generation rate (1/13)

Specific generation of BOF slag (dry base):

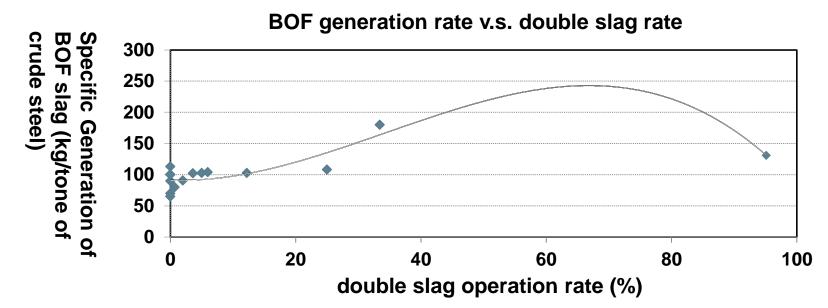
BOF slag	Range	Ave.	Top 20% performance
Specific generation (kg/ton of crude steel)	65 ~180	105 ± 27	76 ± 11

Specific generation of SEC(BOF) slag (dry base):


SEC slag	Range	Ave.	Top 20% performance
Specific generation (kg/ton of crude steel)	2 ~34	14 ± 8	6 ± 3

BOF & SEC slag – generation v.s. [Si] (2/13)

Average values of [C],[Si],[P],[S] content of liquid iron before BOF blowing process


	Ave. ± Stdev.	Range	Best	Top 20% performance
С	4.47±0.19	4.0~4.8	4.0	4.22±0.17
Si	0.48±0.14	0.237~0.7	0.237	0.28±0.04
Р	0.10±0.04	0.04~0.174	0.04	0.05±0.01
S	0.03±0.03	0.0024~0.056	0.0024	0.01±0.01

 It is expected higher [Si] concentration speeds up reaction of de-P during blowing in BOF. The specific generation of BOF slag is affected by many factors.

BOF & SEC slag – generation v.s. blowing operation (3/13)

Type of blowing operation	Percentage of this survey (%)
Single slag process	81
double slag process	12
Double BOFs process	1.4
Sum	94.5 (5.5% liq. Iron do not need BOF blowing)

 It is expected more double slag operation, less BOF slag generation. Based on this figure, it is indicated the specific generation of BOF slag is affected by other factors.

BOF & SEC slag – properties (4/13)

as-received BOF slag: pH=12.26±0.33

[Measurement of pH value of a solution consists of fine slag aggregates (<1mm) and deionized water (ratio of slag : DI-water in weight = 1:1)]

BOF slag	Ave. ± Stdev.	Range	The Best	Top 20% performance
S %	0.13 ± 0.27	-	-	-
F %	2.59 ± 7.04	0~20	0	0.03±0.02
Free CaO	8.98 ± 6.26	3.15~20	3.15	4.48±0.94

Gap : One plant in Southern Europe, BOF slag contains 20% of Florine. But in Western Europe, it is restricted Florine content in BOF slag near 0%.

as-received SEC/BOF slag

SEC slag	Ave. ± Stdev.	The Best	Top 20% performance
S %	0.21 ± 0.18	-	-
F %	1.41 ± 2.55	0	0.09±0.08

BOF slag – processing (5/13)

Percentage of slag quantity is treated by below processes	%	
Pouring onto ground + water spraying	69.27	1
pouring onto ground + natural cooling	16.50	2
BSSF(Baosteel)	6.63	3
Water quenching	5.00	4
Pouring to slag pot + water spraying + water bath	2.36	(5)
Slag modification (e.g. silica sand injection)	0.25	6
Steam aging (Japan)	0.00	
Steam pyrolysis (China)	0.00	
Air quenching	0.00	
CO ₂ carbonization	0.00	

Based on expansion evaluation, it is concluded that only modified slag is fully stabilised.

2-3. BOF & SEC slag – metallics recycling (6/13)

Motollio	Range	5~18.3			External
Metallic content in	Ave.	11 ± 5			recycling
BOF slag	The best	5	740/	4.00/	470/
DOI Slay	Top 20%	6 ± 1	71%	12%	17%

BOF & SEC slag – destination of recycling (7/13)

Destination of de-metallised pre-treatment slag (without metallic)	Ave. (%))
Engineering filling for land or sea area, respectively (e.g. Use of waste in terms of landscape construction.)	19.45	1
Internal and temporary stockpiling	15.98	2
External- raw material for cement manufacturer	13.28	3
Construction of footpath, cycle path or temporary path for vehicle	12.10	4
Road base	12.07	(5)
Internal recycling in sinter plant (as sinter feed)	7.58	6
(% of addition to sinter)	1.56	
Road construction- Pavement brick	7.04	\bigcirc
Internal-powder additive combined with blast furnace cement	0.21	
3-1. % of addition to portland cement (as a raw material)	1.29	
External-powder additive for portland cement product	2.06	
Road construction-Asphalt concrete (AC) (surface pavement)	2.20	
Civil engineering construction (e.g. concrete)-hydraulically bound with cement or binder(s) (other than road and bridge application)	2.34	
Agricultural application-soil improvement (mixing without anything)	1.62	

BOF & SEC slag – destination of recycling (8/13)

Destination of de-metallised pre-treatment slag (without metallics)	Ave. (%)
Marine restoration-unburned pile (slag as received) surrounded by marine block(cement slag mix)	0.01
Hydraulic application-harbor/port waterway dyke (sea dyke) ,river dykes or climate change adaptation works.	0.94
Road/bridge construction-hydraulically bound with cement or binder(s) (for road and bridge only)	0.00
Water quality improvement, mine pit filling, etc.	0.00
Landfilling including internal and external [Waste disposal site for permitted deposition of waste onto or into land including internal waste disposal at a permanent site which is used for temporary storage of waste but excluding recovery operations such as land engineering or engineering fill.(European Definition)]	0.04
other applications	3.33
Agricultural application-fertiliser (~20% addition when mixing with soil)	0.11
Marine restoration-marine block/concrete block, reef building (hydraulically with cement or binders)	0.05

BOF & SEC slag – good performance (9/13)

Good performance

- Internal reused in <u>sinter</u> plant (1% addition)
 --Western Europe (29%, 1% addition); East Asia (25%, 4% addition)
- 2) Raw materials for <u>cement</u> industry
 - -Latin America (20%), Eastern Europe(26%), China(48%, 92%)
- 3) Road construction-- Asphalt concrete (AC) (surface pavement)
 - -- Latin America (27%)
- 4) Road construction- Pavement brick
 - -- Latin America (100%)
- 5) Road base--Western Europe(75%), East Asia(35%)(mixed with BF slag)
- Construction of footpath, cycle path or temporary path for vehicle -- Latin America (94%), East Asia(52%)
- Civil engineering construction (e.g. concrete)-hydraulically bound with cement or binder(s) (other than road and bridge application) -- East Asia(29%)
- 8) Agricultural application-soil improvement (mixing without anything)--Nordic (20%)
- Hydraulic application-harbor/port waterway dyke (sea dyke) ,river dykes or climate change adaptation works -- Western Europe(14%)

BOF & SEC slag – trend of stockpiling & opposition (10/13)

- Trend of internal and temporary stockpiling (comparing with 2014)
 - → increasing-3 plants (Nordic-1, Western Europe-1, Central Europe-1) stay level-3 plants decreasing-6 plants
- Specific use has been campaigned against from other industries, or NGO's
 - use for landfill cover from mines is limited (lime producers are strong), use in road construction is new area with heavy competition from stone and gravel producers
 - Use in agricultural land

BOF & SEC slag – <u>categorisation</u> (11/13)

Categorisation of BOF/SEC slag by national/regional legislation

Among 18 countries/ regions:

Catego	Categorisation of BOF slag by national/regional legislation			
Product	3	Belgium, Slovakia, Taiwan		
By-product	9	France-w/h CTPL certificate, Austria, Sweden, Finland, Germany, Netherlands, China (north),Korea, , India		
End-of-waste	0			
Waste	6	Brazil, China-middle, France, Turkey, Netherlands-rest Italy(Stainless BOFS)		

 \rightarrow This is also a gap among different countries or regions.

Authority policy		
Positive 5		
negative	1	
not specified	7	

BOF & SEC slag – <u>gap</u> (12/13)

Gap

- Recycling destination
 - 1) <u>Sinter ore</u>--Western Europe(29%), East Asia(25%) v.s. 0%
 - 2) Raw material for cement industry--Latin America, Eastern Europe(20-26%) v.s. East Asia(0%) (limited by Cr2O3, MgO content etc.)
- 3) Agricultural application-soil improvement —Nordic(20%) v.s. East Asia(0%)

BOF & SEC slag – <u>other limitations</u> (13/13)

Other limitations due to legal or technical issues

- 1) <u>Total Cr limitation (2500 mg/kg DS)</u> when used in asphalt and this asphalt is only allowed to be used in highways. (gap)
- 2) Total Cr, Cr⁶⁺, free CaO and MgO content, volume expansion, heavy metals, <u>legislative obstacles in agricultural, civil engineering, road</u> <u>construction and related area</u>. (gap)
- 3) NGO/ residents have several concerns: ① Contamination of metallic materials: Cr, Mn, Ba and Ti elements released from the slag. ② <u>High pH value of surface water and groundwater</u> caused by the slag. ③ Volumetric expansion of the slag occurred as it is used in the civil engineering material. ④ <u>Scientific researches in BOF slag are always questioned</u> resulting from previous bad images on slag issue.
- 4) Low vanadium concentration limits use in salt water and agriculture applications
- 5) In the case of <u>agricultural</u> or <u>aqua culture</u> applications, <u>the content of fluorine</u> in periphery area (not slag itself) needs to meet <u>400 mg/kg or less</u> (for the warning limits of Zone 1).

EAF & SEC slag – generation rate (1/8)

Specific generation of EAF slag (dry base):

EAF slag	Range	Ave.	Top 20% performance
specific generation (kg/ton of crude steel)	75 ~280	134 ± 5	88 ± 1

Specific generation of SEC(EAF) slag (dry base):

SEC slag	Range	Ave.	Top 20% performance
specific generation (kg/ton of crude steel)	3 ~79	24 ± 17	6 ± 3

EAF & SEC slag – processing (2/8)

- Common processing for EAF & SEC slag handling: pouring onto ground + water spraying
 - other treatment:
 - BSSF (1 steel plant)
 - Air quenching (1 steel plant)

EAF & SEC slag – properties & metallic (3/8)

As-received EAF slag: pH=11.12 ± 0.11
 Range from 11.04 to 11.20

[Measurement of pH value of a solution consists of fine slag aggregates (<1mm) and deionized water (ratio of slag : DI-water in weight = 1:1)]

- Sulfur contain is about 0.34%
- Fluorine contain is around 0.42%
- As-received SEC(EAF) slag: <u>pH=12.32 ± 0.25</u>
- Sulphur contain is about 0.72%
- Florine contain is around 1.58%
- Percentage of metallic in EAF slag

Metallic			Internal recycling		External
content in	Ave.	6 ± 4 %	In EAF	In Sinter Plant	recycling
EAF slag		77 %	13%	20%	

EAF & SEC slag – destination of recycling (4/8)

Destination of de-metallised EAF & SEC slag (without metallic)		
Road/bridge construction-hydraulically bound with cement or binder(s) (for road and bridge only)	30.74 ①	
Civil engineering construction (e.g. concrete)-hydraulically bound with cement or binder(s) (other than road and bridge application)	16.25 (2)	
Road base	9.31 (3)	
Engineering filling for land or sea area, respectively (e.g. Use of waste in terms of landscape construction.)	8.83 ④	
Road construction-Asphalt concrete (AC) (surface pavement)	8.09 (5)	
External-powder additive for portland cement product	7.87 6	
Construction of footpath, cycle path or temporary path for vehicle		
Landfilling including internal and external	4.59 (8)	
Recycling in sinter plant (as sinter feed)		
External-as a raw material for cement manufacturer		
Road construction-Pavement brick		
Internal and temporary stockpiling		
other applications		

EAF & SEC slag – good performance & opposition (5/8)

Good performance

Construction -- Asphalt concrete (AC) (surface pavement)

 \rightarrow 3 steel plants 100% (Latin America-1, Middle East-2)

Road base --

 \rightarrow 3 steel plants <u>100%</u> (Eastern Europe-1, Latin America-2)

Trend of internal and temporary stockpiling (comparing with 2014)
 Increasing- 3 plants (Southern Europe-1, Latin America-2)
 Stay level-2 plants
 Decreasing-7 plants

Specific use has been campaigned against from other industries, or NGO's

- Although it hasn't yet been campaigned against, there's an opposition from gravel pit producers

EAF & SEC slag – <u>categorisation</u> (6/8)

 Categorisation of EAF slag by national/regional legislation Among 20 countries/ regions:

Categorisation of EAF slag by national/regional legislation				
Product	3	UK, Norway, Italy-after treatment		
By-product	8	Sweden; Mexico, Korea, India, Spain, Germany France-w/h CTPL certificate		
End-of-waste	0			
Waste	9	Taiwan, Poland, France, Brazil, Romania China (middle) Japan(Stainless slag)		

 \rightarrow This is also a gap among different countries or regions.

EAF & SEC slag – gap (7/8)

Gap

Recycling destination

<u>100%</u> Asphalt concrete (AC) (surface pavement)
-Latin America-1, Middle East-2
<u>100% Road base</u>- Eastern Europe-1, Latin America-2
80% Road base- Latin America-1
50-60% Road base- Southern Europe-2

v.s. <u>18~23% landfilling</u>- Southern Europe-2

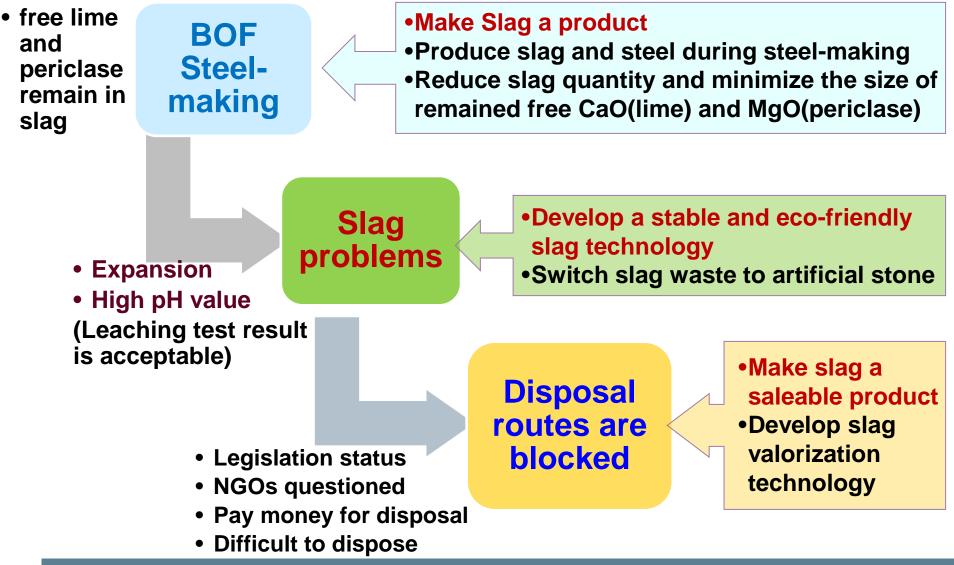
legislative limit of <u>Fluorine content</u> in EAF slag

-- In Latin America < 1.5 mg/l (in leaching test)

EAF & SEC slag – <u>other limitations</u> (8/8)

Other limitations due to legal or technical issues

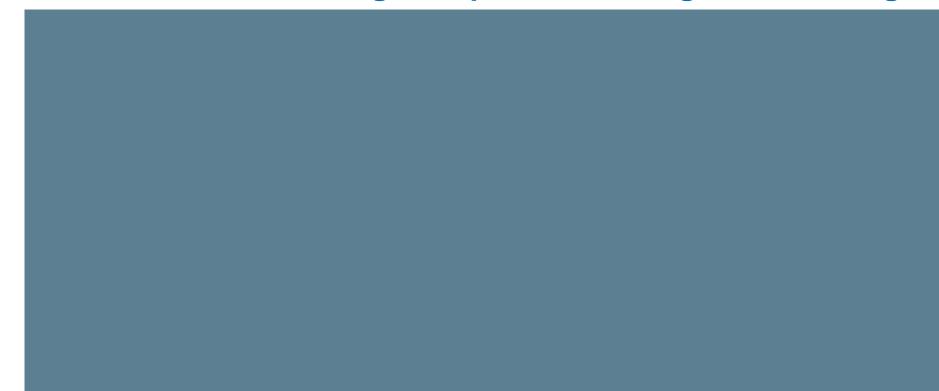
- Limits in Leachate mg/kg (dry base) -Barium(20);Arsenic(0.5);Cadmium(0.04);Copper(2); Total Chromium(0.5);Mercury(0,01);Nickel(0.4);Lead(0.5); Zinc(4);Molybdenum(0.5);Selenium(0.1);Antimony(0.06); Chloride(800);Fluoride(18);Sulfate(1000)
- 2) <u>Legislative prohibition of EAF slag usage in agricultural</u> area and structural engineering
- Lack of compromise/ interest from Government in order to use it in public civil engineering: maximum thickness in road base-70 cm; <u>Obligation to cover with pavement (asphalt or concrete)</u> <u>in order to limit leachate</u>.


Problems and Countermeasures

Problems and countermeasures

Problems

Countermeasures



New approach to untying the slag knot

Produce slag as a product during steel-making

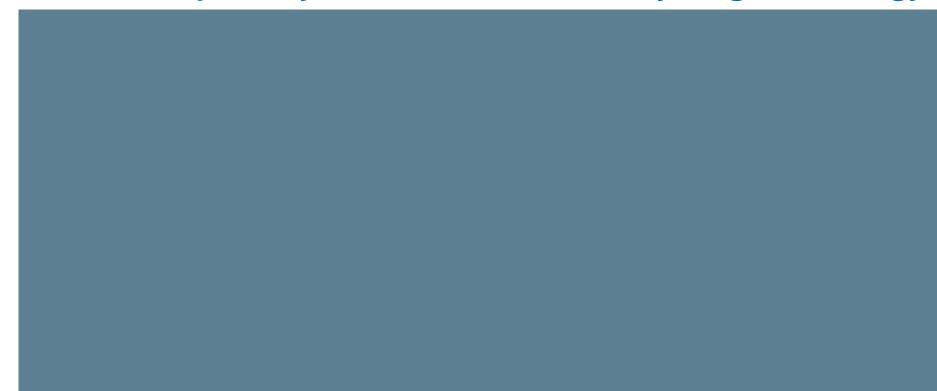
Produce slag as a product during steel-making & Reduce slag quantity and minimize the size of remained free CaO/MgO

■ Double slag operation → reduce ~6 kg/tone of crude steel

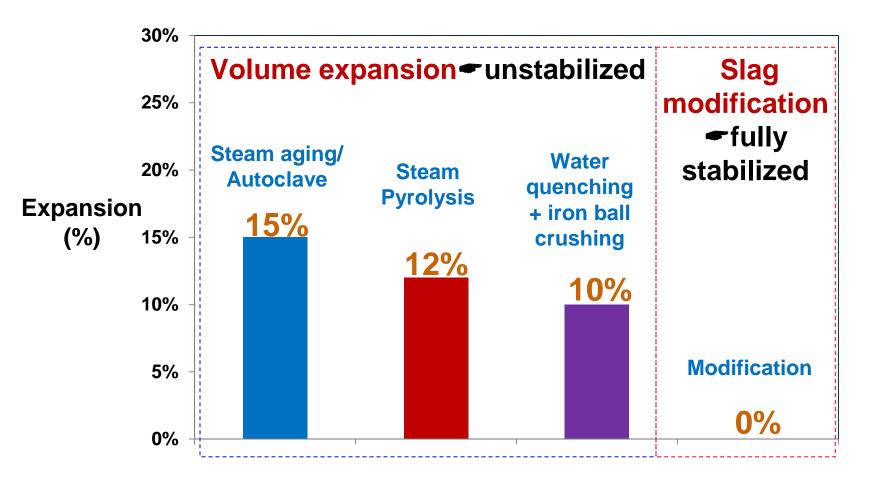
Items	De-P efficiency	CaO equivalence	Total slag quantity (kg/tone of crude steel)
Before double slag operation	89.5%	40.84	71.49
After double slag operation	89.7%	33.46	65.88
comparison	+0.2% (keep the same)	-7.38	-5.61

 Chemical composition of De-Phos slag results from double slag operation characterised by high Phos, Fe_xO_y content and skeleton structure. Therefore not easy to recycle for special application.

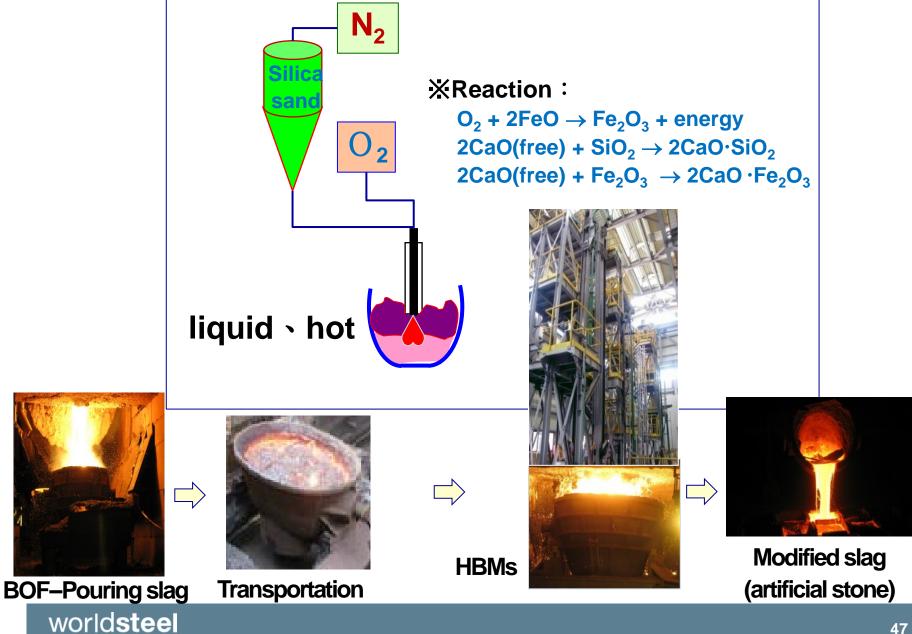
Produce slag as a product during steel-making & Reduce slag quantity and minimize the size of remained free CaO/MgO

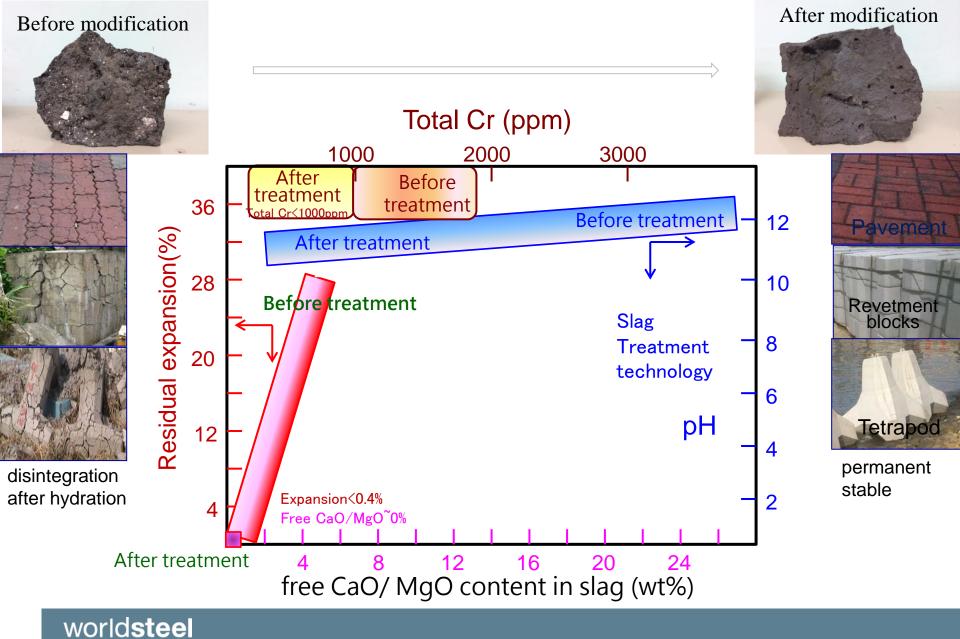

• Double BOFs operation \rightarrow reduce specific generation slag

Steel	BOF	Type of	Unit consumption of	Unit consumption of light
plants	capacity	blowing	lime (kg/ton of	burned dolomite (kg/ton of
	(Ton)	operation	crude steel)	crude steel)
Japan	300	Double BOFs	27.6	15.2
China	300	Single slag	37.6	13.1
China	300	double slag	28.3	12.9



Develop a fully stable and eco-friendly slag technology


Develop a fully stable and eco-friendly slag technology


Expansion of original slag ~ 20% Legislative requirement for slag $\leq 0.5\%$

Hot Stage BOF Slag Modification (HBM) Station

Fully stable and Eco-friendly slag (Modified slag/ artificial stone)

ASSOCIATION

Make the most of recycling

Make the most of recycling from internal reuse

Start reusing from sinter plant (internal recycling)

 \rightarrow of course, there must exists De-SOx facility.

Advantage


If one million (1000,000) tonnes of slag is recycled in sinter plant, then

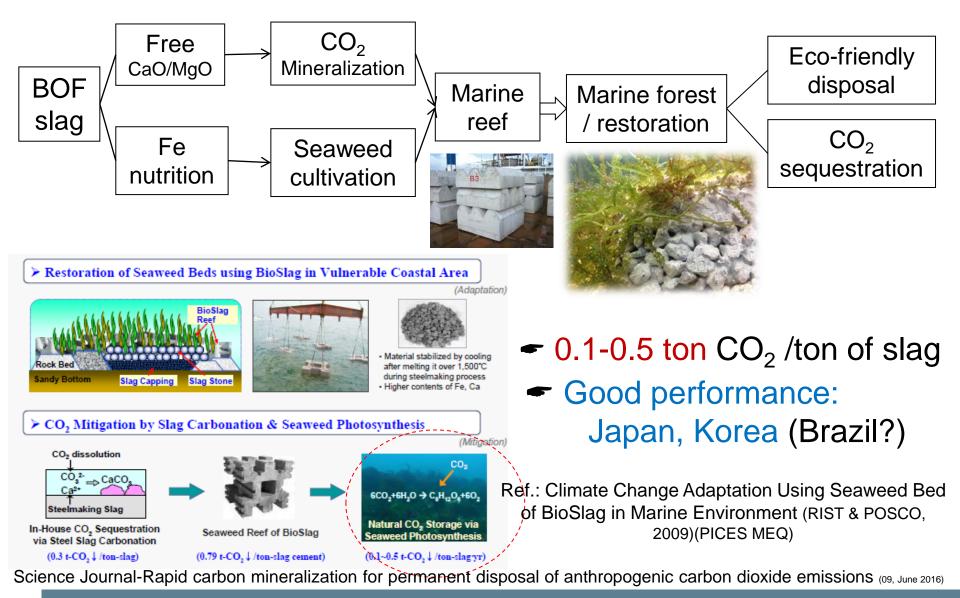
- ~715,000 tonnes of limestone(CaCO₃) can be replaced.
 - → ~ 10 million \in can be saved each year
- ~ 310,000 tonnes of CO_2 emission is eliminated

Legislative position of slag in the circular economy

Legislative position of slag in the circular economy

	Product	By-product	End-of-waste	Waste
De-S slag	Slovakia Taiwan	France-w/h CTPL certificate Korea Sweden Finland India China (north)		Brazil China (middle) Turkey, Italy France, Germany UK, Belgium Greece
BOF slag	Belgium Slovakia Taiwan	France-w/h CTPL certificate Austria, Sweden Finland Germany, Netherlands China (north) Korea, India	UK (?)	Brazil China-middle France Turkey Netherlands-rest Italy(Stainless BOFS)
Secondary Refining slag	Italy Taiwan	Belgium Finland	UK(?) Germany(?)	France Greece Netherlands
EAF slag	UK Norway Italy-after treatment	Sweden; Mexico Korea, India Spain, Germany France-w/h CTPL certificate India		Taiwan; Poland France; Brazil Romania China (middle) Japan(Stainless slag)

 Promote change in legislation status for slag from waste to a product by making use its superior properties, specific application, and saleable product.



Slag impact on mitigating global climate change

Slag impact on mitigating global climate change

worldstee

Adding value to slag and turning it into a profitable product

Adding value to slag and turning it into a profitable product

worldstee

BOF-PAC路而

porous

Thermo-physical properties

Items		Phy	(Data from CSC)			
	Los Angeles abrasion (%)	Sodium Sulphate corrosion test (%)	Water absorption (%)	Bulk density	Vicker's Hardness(Hv)	Mohr's Hardness
Artificial stone	7.4-10.1(500 rotation) 18.1 (1000 rotation)	~0.2	0.4-1.2	3.40-3.46	580	~5.5-6.5

Items	Physical Properties		Chemical compositions (wt%) (Data from CSC						m CSC)	
	True density (g/cm ³)	Los Angeles abrasion (%)	CaO	SiO ₂	MnO	MgO	Al ₂ O ₃	TiO ₂	Cr ₂ O ₃	others
Artificial stone	3.01	~10.1	30-45	12-22	1.5-3.5	3-8	2-5	0.3-0.7	0.1-0.3	12-28

Items	Specific Heat	Thermal Conductivity	Thermal Diffusivity	P ₂₅ (Electric resistivity)	Thermal Expansion	Emission Intensity (Electromagnetic wave)	
Artificial stone	$\begin{array}{c} \text{~~}0.75 \ J/g^{\circ}C_{\text{(23°C)}} \\ 0.93 \ J/g^{\circ}C_{\text{(300°C)}} \end{array}$	$\begin{array}{c} \sim 1.37 \ W/mK_{(23^{\circ}\text{C})} \\ 1.46 \ W/mK_{(300^{\circ}\text{C})} \end{array}$	$\begin{array}{c} \sim\!\! 0.505mm^2\!/S_{(1.818x10^3m^2/h)} \\ \scriptstyle (23^\circ\text{C}); 0.43mm^2\!/S_{(300^\circ\text{C})} \end{array}$	~3.54x10 ⁴ Ωcm	~12.22~12.61x10 ⁻⁶ 1/°C(600°C)	>0.90	~204 MPa (2040kg/cm ²)

- A potential thermal energy storage material by its good thermo-physical properties, thermal stability, storage capacity and low price.
- A functional material for health industry by high emission intensity.
- A good waste water treatment agent (even Cr+6) by FexOy content.

Heat recovery and precipitated CaCO₃ from slag

 Hot modified slag is good for heat recovery and producing fine grain for further finish product processing.

world**stee**

Conclusions

Conclusions

- Change the philosophy in steel making and treat slag the same as steel and treat it as a quality product.
- Recycle it internally.
- Develop a stable and eco-friendly slag technology for steel making slag by switching slag to artificial stone, and add value to slag and make it saleable product.
- It converts slag to a resource, saves energy, reduces CO₂ emission, and potentially reduces environmental impact and contributes to protect the environment. It will be a eco-friendly material for the 21 century.
- Promote change in legislation status for slag from waste to a product by making use its superior properties such as electromagnetic characteristics and reducing CO₂ emissions.

Follow-up work

Follow-up work

- Create a steel slag product and process catalogue on Extranet
- Promote the heat recovery from slag
- Promote product catalogue with worldsteel members
- Promote sea reef applications and other product applications
- Promote slag use in cement
- Promote changes to legislation to shift slag from waste to product.
- Promote steel slag as a treatment agent for waste water (Cr⁺⁶)
- Promote steel slag as a treatment for weak acid treatment (pH~2).

Thank you for your attention.

For further information contact:

Yu-Chen Andre LEE | Fellow World Steel Association lee@worldsteel.org | T: +32 (0)2 708 81 86 | worldsteel.org

A S S O C I A T I O N

worldsteel.org